明青智能端-边-云架构:准确与能效的工程实践
在智慧工厂、智慧交通等高实时性场景中,单一计算层难以兼顾识别精度与能耗效率。
明青智能采用端-边-云分层决策架构,构建场景适配的计算链路:端侧设备执行轻量化预处理(<50ms延时),边缘节点完成80%高频次检测任务,云端集中处理长周期数据分析与模型迭代。
比如高速公路缺陷(抛洒物、裂缝等)检测,因为巡检车速度很快,且有些缺陷必须立刻上报,以尽可能避免交通事故的发生,就需要利用边缘计算设备实时识别出比较大的坑槽、抛洒物等情况,但裂缝厚度、长度等测量,则放到云端系统计算,实现识别及时性和准确性、系统成本和效率的统一。
我们提供分层架构的灵活组合方案:在“端”级,提供AIlooker系列智能摄像头完成各种识别任务,在“边”级,提供自研的单体智能盒,同时支持多种边缘硬件适配;在“云”端,提供云端识别平台,实现大规模、复杂识别任务。 明青智能已在多个场景,采用该架构的实现好很好的识别效果,完整技术方案可联系技术团队获取。 明青AI视觉系统,深入场景,定制化智能识别,助力业务升级。车流量监测系统解决方案
明青AI视觉:复杂场景下的准确计数解决方案。
计数是AI视觉常用场景之一,但复杂场景下实现准确计数,要克服很多障碍。
以生猪屠宰厂为例,脏污环境、摄像头安装位置受限、光线干扰、操作不规范、遮挡重叠等情况,严重影响了计数的准确性。明青AI以自研视觉算法,深入结合场景,实现生猪猪只、白条的高精度自动计数,助力企业提升管理效率。
关键技术突破
1.复杂环境适配有效克服血渍、蒸汽、反光干扰,保持稳定可靠运行,;
2.动态目标捕捉自研实时动态追踪算法,准确识别重叠、快速移动的生猪猪只,实现了极高准确率;
3.抗干扰建模针对工人遮挡、叠猪、非标准吊挂等场景专项优化,生猪、白条计数漏检率被压缩到了极低的水平。
AI视觉系统帮助屠宰企业实现生猪、白条的自动计数,数据实时同步ERP系统;减少人员使用,节省人力;大幅降低因计数误差导致的纠纷..
明青AI以扎实的场景化能力,为类似于各行各业提供可靠的数字化升级路径。 实时视觉预警系统解决方案明青AI视觉方案:赋能企业自主构建专属模型。
明青智能:AI视觉驱动生产效率提升。
在工业智能化升级浪潮中,明青智能聚焦生产场景痛点,以AI视觉技术为基础构建高效能解决方案,助力企业提升效率。方案通过高精度视觉检测系统实现产线全流程数字化监控:毫秒级实时捕捉产品缺陷、智能识别物料规格、动态追踪生产动线,替代传统人工抽检的低效与误差,大幅度质检效率。基于深度学习的生产数据智能分析模块,可自动识别设备异常状态、优化工序衔接节奏,帮助企业提升产线综合利用率。与人工检测相比,AI视觉方案可以大幅降低产线缺陷漏检率,缩短质检耗时,提升组装效率,降低人工干预频次等等。
明青智能以技术落地为导向,用可量化的效率提升数据,帮助企业打造“看得清、算得准、响应快”的智能生产范式,让AI价值真正转化为产能增长动力
在视觉识别技术的所有指标中,准确率是衡量解决方案价值的关键标尺。
明青AI视觉聚焦工业质检、智慧零售、智能安防等场景,以扎实的技术研发构建起高精度识别的优势。明青AI视觉依托自主研发的多维度特征提取网络,结合动态场景自适应算法,实现对复杂光照、视角变化、微小差异目标的准确捕捉。针对易混淆物体(如相似零部件、包装变体商品、复杂表情人脸),通过大量标注数据训练的深度模型,可智能辨析细微特征差异,有效降低漏检率与误识率。在实际应用中,明青AI视觉系统已在鞋类缺陷检测、市容环境监控等场景中,经实际使用验证,准确率始终保持非常高的水准。
我们拒绝噱头式宣传,以可复现的技术实力与稳定表现,为客户提供真正值得信赖的视觉识别解决方案。 明青智能,看见更多可能!
明青AI视觉方案:自研神经网络模型,助力工业智能化。
明青AI视觉方案基于自主研发的深度神经网络架构,通过创新模型设计与持续优化,为工业场景提供高精度、高泛化性的视觉检测能力。
方案采用多模态特征融合技术,相较传统算法对复杂场景有更好的适应性。可以实现微小缺陷的稳定识别,以及区分随机性非常大的瑕疵,检测准确率高,且识别速度更快。针对产线动态变化,模型内置快速学习和迭代机制,可在不中断生产的情况下完成参数迭代;仓储场景中,模型通过轻量化设计,在低算力设备上仍保持很高的定位精度,大幅提升了分拣效率。
该神经网络架构已在纺织、汽车零部件、智慧城市领域落地应用,并持续进化,助力企业不断提升检测精度与运营效率。 明青AI视觉:构建企业质量管理的数字防线。视觉数据采集系统算法
明青AI视觉,高效识别缺陷。车流量监测系统解决方案
明青AI视觉检测系统:解决鞋业质检随机性难题。
在鞋类制造中,缺陷检测面临多重随机性挑战:材质反光差异、纹理干扰、不规则瑕疵(如划痕、开胶、污渍)等传统算法难以稳定识别的问题。
明青AI自主研发的多尺度动态学习架构,针对性突破复杂场景下的视觉检测瓶颈。
技术竞争力解析:1.多模态特征融合系统集成可见光、结构光等多源数据,通过动态权重分配算法,准确区分反光、褶皱等干扰信号与真实缺陷,避免过检/漏检。2.小样本自适应迭代针对新材质、新工艺导致的未知缺陷类型,支持只需少量样本快速建模,模型迭代周期大幅度缩短,适应产线灵活调整需求。3.实时抗干扰优化内置环境光补偿模块与运动模糊修正算法,实现高检出率,低漏检率。
目前,明青AI已在国内头部鞋企落地应用,降低了质检人工成本,并明显提升了缺陷追溯效率。
我们专注为制造场景提供高鲁棒性、低维护成本的视觉解决方案,助力企业攻克质检不确定性难题。 车流量监测系统解决方案