RTTLITP20 热红外显微镜凭借多元光学物镜配置,构建从宏观到纳米级的全尺度热分析能力,灵活适配多样检测需求。Micro广角镜头可快速覆盖大尺寸样品整体热分布,如整块电路板、大型模组的散热趋势,高效完成初步筛查;0.13~0.3x变焦镜头通过连续倍率调节,适配芯片封装体、传感器阵列等中等尺度器件热分析,兼顾整体热场与局部细节;0.65X~0.75X变焦镜头提升分辨率,解析芯片内部功能单元热交互,助力定位封装散热瓶颈;3x~4x变焦镜头深入微米级结构,呈现晶体管阵列、引线键合点等细微部位热分布;8X~13X变焦镜头聚焦纳米尺度,捕捉微小短路点、漏电流区域等纳米级热点的微弱热信号,满足先进制程半导体高精度分析需求。
多段变焦与固定倍率结合的设计,实现宏观到微观热分析平滑切换,无需频繁更换配件,大幅提升半导体失效分析、新材料热特性研究等领域的检测效率与精细度。 量化 SiC、GaN 等宽禁带半导体的衬底热阻、结温分布,优化散热设计。国产热红外显微镜用途
无损热红外显微镜的非破坏性分析(NDA)技术,为失效分析提供了 “保全样品” 的重要手段。它在不损伤高价值样品的前提下,捕捉隐性热信号以定位内部缺陷,既保障了分析的准确性,又为后续验证、复盘保留了完整样本,让失效分析从 “找到问题” 到 “解决问题” 的闭环更高效、更可靠。
相较于无损热红外显微镜的非侵入式检测,这些有损分析方法虽能获取内部结构信息,但会破坏样品完整性,更适合无需保留样品的分析场景,与无损分析形成互补。 半导体失效分析热红外显微镜平台热红外显微镜的 AI 智能分析模块,自动标记异常热斑并匹配历史失效数据库。
热红外显微镜(Thermal EMMI )技术不仅可实现电子设备的故障精细定位,更在性能评估、热管理优化及可靠性分析等领域展现独特价值。通过高分辨率热成像捕捉设备热点分布图谱,工程师能深度解析器件热传导特性,以此为依据优化散热结构设计,有效提升设备运行稳定性与使用寿命。此外,该技术可实时监测线路功耗分布与异常发热区域,建立动态热特征数据库,为线路故障的早期预警与预防性维护提供数据支撑,从根本上去降低潜在失效风险。
车规级芯片作为汽车电子系统的重心,其可靠性直接关系到汽车的安全运行,失效分析是对提升芯片质量、保障行车安全意义重大。在车规级芯片失效分析中,热红外显微镜发挥着关键作用。芯片失效常伴随异常发热,通过热红外显微镜分析其温度分布,能定位失效相关的热点区域。比如,芯片内部电路短路、元器件老化等故障,会导致局部温度骤升形成明显热点。从而快速定位潜在的故障点,为功率??榈氖Х治鎏峁┝饲坑辛Φ墓ぞ?。可以更好的帮助车企优化芯片良率与安全性。热红外显微镜支持芯片、电路板等多类电子元件热检测。
致晟光电热红外显微镜采用高性能InSb(铟锑)探测器,用于中波红外波段(3–5 μm)的热辐射信号捕捉。InSb材料具有优异的光电转换效率和极低的本征噪声,在制冷条件下可实现高达nW级的热灵敏度和优于20mK的温度分辨率,适用于高精度、非接触式热成像分析。该探测器在热红外显微系统中的应用,提升了空间分辨率(可达微米量级)与温度响应线性度,使其能够对半导体器件、微电子系统中的局部发热缺陷、热点迁移和瞬态热行为进行精细刻画。配合致晟光电自主开发的高数值孔径光学系统与稳态热控平台,InSb探测器可在多物理场耦合背景下实现高时空分辨的热场成像,是先进电子器件失效分析、电热耦合行为研究及材料热特性评价中的关键。
热红外显微镜通过热成像技术,快速定位 PCB 板上的短路热点 。制造热红外显微镜厂家
热红外显微镜可对不同材质的电子元件进行热特性对比分析 。国产热红外显微镜用途
致晟光电热红外显微镜(Thermal EMMI)系列中的 RTTLIT P20 实时瞬态锁相热分析系统,采用锁相热成像(Lock-inThermography)技术,通过调制电信号提升特征分辨率与灵敏度,并结合软件算法优化信噪比,实现显微成像下超高灵敏度的热信号测量。RTTLIT P20搭载100Hz高频深制冷型超高灵敏度显微热红外成像探测器,测温灵敏度达0.1mK,显微分辨率低至2μm,具备良好的检测灵敏度与测试效能。该系统重点应用于对测温精度和显微分辨率要求严苛的场景,包括半导体器件、晶圆、集成电路、IGBT、功率???、第三代半导体、LED及microLED等的失效分析,是电子集成电路与半导体器件失效分析及缺陷定位领域的关键工具。国产热红外显微镜用途