航空发动机用耐高温注塑加工件,采用聚酰亚胺(PI)与碳化硅晶须复合注塑成型。添加 20% 碳化硅晶须(长径比 10:1)通过超声辅助混炼(功率 500W,温度 350℃)均匀分散,使材料在 300℃高温下的弯曲强度达 180MPa,热导率提升至 1.2W/(m?K)。加工时运用高压 RTM 工艺(注射压力 15MPa,温度 280℃),在涡轮增压器隔热罩上成型 0.8mm 厚的蜂窝状结构,蜂窝孔尺寸公差 ±0.03mm,配合气相沉积法(PVD)在表面制备 5μm 厚的二硅化钼涂层,耐氧化温度提升至 1200℃。成品经 1000 小时 300℃热老化后,失重率≤0.5%,且在发动机振动(振幅 ±1mm,频率 500Hz)测试中无开裂,为航空发动机的高温区域提供轻量化隔热绝缘部件。注塑加工件的筋位设计增强结构强度,可承受 20kg 以上的垂直压力。杭州新能源电池壳体加工件ODM/OEM代工
5G 基站用低损耗绝缘加工件,采用微波介质陶瓷(MgTiO?)经流延成型工艺制备。将陶瓷粉体(粒径≤1μm)与有机载体混合流延成 0.1mm 厚生瓷片,经 900℃烧结后介电常数稳定在 20±0.5,介质损耗 tanδ≤0.0003(10GHz)。加工时通过精密冲孔技术(孔径精度 ±5μm)制作三维多层电路基板,层间对位误差≤10μm,再经低温共烧(LTCC)工艺实现金属化通孔互联,通孔电阻≤5mΩ。成品在 5G 毫米波频段(28GHz)下,信号传输损耗≤0.5dB/cm,且热膨胀系数与铜箔匹配(6×10??/℃),满足基站天线阵列的高密度集成与低损耗需求。注塑加工件设计注塑加工件的定位柱高度公差 ±0.1mm,确保多部件装配同轴度。
磁悬浮列车轨道的绝缘加工件,需在强交变磁场中保持低磁滞损耗,采用非晶合金带材与环氧树脂真空浇铸成型。将 25μm 厚的铁基非晶带材(饱和磁感应强度 1.2T,损耗≤0.1W/kg@400Hz)叠压后,在真空环境下(压力≤10?3Pa)浇铸改性环氧树脂,固化后经精密研磨使表面平面度≤10μm。加工时控制非晶带材的取向度≥95%,避免磁畴紊乱导致损耗增加。成品在 400Hz、1.0T 磁场工况下,磁滞损耗≤0.08W/kg,且局部放电量≤0.1pC,同时能承受 50m/s 速度下的电磁斥力(约 500N/cm2),确保磁悬浮列车悬浮系统的稳定绝缘与低能耗运行。
光伏追踪系统注塑加工件选用耐候性 ASA 与纳米二氧化钛复合注塑,添加 5% 金红石型 TiO?(粒径 50nm)经双螺杆挤出(温度 220℃,转速 280rpm)均匀分散,使材料紫外线吸收率≥99%,黄变指数 ΔE≤3。加工时运用低压注塑工艺(注射压力 80MPa),在追踪支架连接件上成型加强筋结构(筋高 4mm,壁厚 1.5mm),配合模内贴膜技术(PET 膜厚度 50μm)提升表面耐磨度,摩擦系数降至 0.2。成品在 QUV 加速老化测试(4000 小时)后,拉伸强度保留率≥85%,且在 - 40℃~85℃温度循环 1000 次后,连接孔尺寸变化率≤0.1%,满足光伏电站 25 年户外使用的耐候与结构需求。精密加工的绝缘件尺寸一致性好,批量生产时质量稳定可靠。
氢燃料电池储氢罐注塑加工件采用玻璃纤维增强 PA6 与阻氢涂层复合工艺,先通过长纤维注塑(LFT)成型罐体骨架(玻纤长度 12mm,含量 50%),拉伸强度达 280MPa,再通过气相沉积法(CVD)在内壁制备 10μm 厚的硅氧烷阻氢层,氢渗透速率≤1×10??mol/(cm?s)。加工时运用缠绕注塑技术,在罐体封头处形成 ±55° 交叉纤维层,经 100MPa 水压爆破测试时,断裂延伸率≥5%,满足 ISO 19880-3 标准要求。成品在 - 40℃~85℃温度区间内,经 10000 次充放氢循环(0~70MPa)后,罐体变形量≤0.3%,且内衬溶胀率≤1%,确保氢燃料电池车的储氢安全与长寿命。耐寒注塑件在 - 40℃环境下仍保持韧性,不易发生脆裂。低成本注塑加工件批发
防静电注塑件添加碳纤填料,表面电阻控制在 10?-10?Ω 区间。杭州新能源电池壳体加工件ODM/OEM代工
矿用隔爆型电气设备的绝缘加工件,必须满足 MT/T 661 - 2011 标准要求,选用耐瓦斯腐蚀的三聚氰胺甲醛树脂材料。加工时采用模压成型工艺,在 170℃、18MPa 压力下保压 120 分钟,使工件密度达到 1.5 - 1.6g/cm3,吸水率≤0.1%。成品需通过 1.5 倍额定电压的工频耐压测试(持续 1 分钟无击穿),同时承受 50J 能量的冲击试验不破裂,其表面电阻值≤1×10?Ω,防止摩擦产生静电引燃瓦斯气体。在井下湿度 95% RH 的环境中使用 12 个月后,绝缘电阻仍能保持≥1011Ω,保障煤矿安全生产。?杭州新能源电池壳体加工件ODM/OEM代工