另外,由于微孔太小,雾化液体中的溶质或杂质很容易造成微孔堵塞而使雾化装置无法雾化。当自上而下喷雾时,如果雾化液体过多会积压在微孔网片上,也会造成无法振动雾化的情况。所以该种超声波雾化方式的应用比较有限,*适合于对质量要求不太高的便携式微量雾化的一些消费类领域,比如小型的香薰器、家用手持雾化吸入器、美容补水仪等等。
第三种超声波雾化方式是一种利用朗之万式超声波换能器的雾化方式,该项技术**早是在上世纪90年代前后在美国提出,在传统的朗之万式超声换能器上开通液体通道,液体被输送到在换能器变幅杆比较大振幅点的前端时被超声振动撕裂而雾化。 超声波雾化器可以用于制造化妆品包装盒上的印刷图案。江苏制造超声波雾化厂家直销
聚合物分子液体
纯溶液在大多数情况下与纯液体相似,除了当溶解液中含有很长的聚合物分子链。在这种情况下,聚合物分子的长度会影响雾化过程,那是当液滴从整个液体中分离并进而形成雾化状态时,那些聚合物分子就会阻碍这种离散液滴的形成。
不溶固体混合液
带有不溶解固体的混合液,有三种因素会影响雾化能力:颗粒大小、 固体浓度及固体颗粒与载体之间的动态关系。
固体颗粒的浓度十分重要,上限值大约为30%, 在高浓度情况下,要有恰当的条件才能雾化。即使颗粒大小合适,液体雾化的可行性还受别的动态因素影响,诸如载体的粘度及固体成分保持悬浮状态的能力。 山西通用超声波雾化维修超声波雾化器可以用于制造金属合金中的微粒。
利用超声波将液体雾化的技术或方式均可以被称为“超声波雾化”,具体的实现方式和技术有很多很多种,而我们这里主要讨论的以及我们通常说的“超声波雾化”是指基于压电陶瓷换能器的超声波雾化。而基于压电陶瓷换能器的超声波雾化也有很多种,目前行业上主流使用的超声波雾化方式可以被大致分为三类:单晶片压电陶瓷式、微孔网片式、朗之万换能器式。下面我们就具体介绍一下这三类超声波雾化方式的原理及特点。
首先,单晶片的压电陶瓷换能器组成的超声波雾化器可以说是为常见也是早的超声波雾化方式,又被俗称为超声波雾化片(如图1所示)。该种技术是通过压电陶瓷换能器(雾化片)在液体中振动发射超声波,当超声波传递到液体与空气的交界面时,由于不同介质声阻抗的巨大差异,超声波能量会在交界面处快速聚集并将液体终撕裂成微小的液滴而形成雾化。
超声波雾化的原理存在两种理论解释。分别是微激波理论和表面张力波理论。 一方面,微激波理论解释,超声波在液体介质中产生的空化效应导致微激波的产生从而产生雾化现象。这种理论认为空化效应是使得液体产生雾化的直接原因,空化的空泡崩溃时除了产生热和光辐射外其余部分以微激波的形式辐射当微激波达到一定强度时引起液体的雾化当微激波达到一定强度时引起液体的雾化。 另一方面,表面张力理论认为雾滴的产生是由于液体表面波的不稳定使得液体产生雾化,具体的说当一定声强的超声波通过液体指向气液界面超声波在此界面形成表面张力波在与表面张力波相垂直的力的作用下一旦振动面的振幅达到一定值,液滴即从波峰上飞出而形成雾化。这种理论认为表面张力波在它的波峰处产生雾滴,其雾滴尺寸与波长成正比。表面张力波的模型及表面张力波雾化模型图。超声波液体处理可以去除污染物、杀灭细菌等应用。
应用:
超声波雾化喷涂系统如今在很多领域都有应用,其中在替代能源与纳米材料、玻璃工业、医疗、印刷电路板、半导体等领域尤为突出。如:
1、超声波燃料电池催化剂涂层系统
2、薄膜&钙钛矿太阳能电池涂层系统
3、碳纳米管、纳米线及其它纳米材料涂层系统
4、薄膜功能玻璃涂层系统
5、硬质涂层及其他薄膜?;げA坎阆低?
喷涂是通过喷枪或碟式雾化器,借助于压力或离心力,分散成均匀而微细的雾滴,施涂于被涂物表面的涂装方法。喷涂是防腐工程中比较常见的一种常见的施工方法,在施工过程中,喷涂也会出现很多的问题,像流挂、气泡等问题。 超声波雾化器可以用于制造汽车零部件上的涂层。天津定制超声波雾化销售厂家
超声波雾化器可以用于制备高纯度金属合金、玻璃等材料。江苏制造超声波雾化厂家直销
第二种超声波雾化方式是通过环形压电陶瓷与一个微孔网片贴合而形成的超声雾化装置,该项技术在本世纪初期从压电喷墨打印上改良而引入到超声雾化领域。其是利用压电陶瓷的径向伸缩振动带动微孔网片(一般为不锈钢、钛合金等金属薄片)的轴向振动,然后微孔网片将其一侧的液体吸收并穿过微孔喷射出去,由于微孔很多孔径很小(一般在5-10微米),被微孔网筛出去的微小液滴也就形成了液雾。图4为一种微孔网片式雾化换能器的微孔片显微镜照片。此种雾化方式实际上是一种喷阀而并不是传统意义上的振动撕裂产生的雾化,所以该种雾化方式与其他超声雾化方式不同,其雾化粒径与超声频率无关,与微孔的孔径有关,雾化粒径基本与孔径接近。江苏制造超声波雾化厂家直销