其采摘力度可根据果实种类和成熟度调节。智能采摘机器人的末端执行器配备了高精度压力传感器和智能控制系统,能够根据果实的特性控制采摘力度。对于不同种类的果实,系统内置了对应的力度参数库,如草莓、樱桃等娇嫩果实的抓取力度控制在 0.1 - 0.3 牛顿,而苹果、梨等果实的抓取力度则为 0.5 - 0.8 牛顿。同时,针对同一果实的不同成熟度,系统也能进行精细化调节。成熟度高的果实果肉柔软,抓取力度会相应减小;成熟度低的果实质地较硬,抓取力度则适当增加。在实际采摘过程中,压力传感器以每秒 100 次的频率实时监测抓取力度,并将数据反馈给控制系统,控制系统根据反馈信息实时调整机械臂的动力输出,确保在抓取牢固的同时,不损伤果实表皮。经测试,该系统可将采摘过程中的果实损伤率控制在 1% 以内,极大地提升了采摘果实的品质和商品价值。机器人采用 ROS 操作系统开发,这一技术来自熙岳智能的精心打造。农业智能采摘机器人按需定制
智能采摘机器人搭载多光谱摄像头,可识别果实成熟度。多光谱摄像头作为机器人的 “眼睛”,能够捕捉可见光和不可见光范围内的多种光谱信息,覆盖从紫外线到近红外的波段。不同成熟度的果实,在这些光谱下会呈现出独特的反射、吸收和透射特性。例如,成熟的苹果在近红外光谱下反射率较高,而未成熟的苹果反射率较低。机器人通过分析多光谱图像数据,结合预先训练好的算法模型,能够快速且地判断果实是否达到采摘状态。这种技术不避免了人工判断的主观性和误差,还能在复杂光照条件下保持稳定的识别效果,有效提升了采摘果实的品质和一致性,极大减少了因采摘过早或过晚造成的损失。广东农业智能采摘机器人技术参数随着科技发展,熙岳智能将持续优化智能采摘机器人,提升其性能和适应性。
智能采摘机器人能在夜间持续作业,突破人力采摘时间限制。智能采摘机器人配备了先进的夜间作业辅助系统,使其能够在黑暗环境中正常工作。机器人的摄像头采用红外夜视技术,即使在无光照的情况下也能清晰捕捉果园内的图像信息,结合 AI 视觉算法,依然可以准确识别果实的位置和成熟度。此外,机器人的机械臂和行走机构都进行了特殊设计,降低运行噪音,避免在夜间作业时惊扰果园周边的居民和动物。夜间果园环境相对稳定,没有白天的高温和强烈光照,一些果实的生理状态也更适合采摘。智能采摘机器人利用夜间时间持续作业,不可以充分利用果园的生产时间,提高采摘效率,还能缓解白天劳动力紧张的问题,实现果园采摘的全天候作业,有效增加果园的产量和经济效益。
机械臂末端的吸盘装置可高效抓取圆形果实。智能采摘机器人机械臂末端的吸盘装置采用气动负压原理,由硅胶吸盘、真空发生器和压力调节系统组成。硅胶吸盘具有良好的柔韧性和密封性,能够紧密贴合圆形果实表面,如苹果、柑橘、番茄等。当机械臂对准果实后,真空发生器迅速启动,在 0.2 秒内将吸盘内的空气抽出,形成负压,将果实牢牢吸附。压力调节系统实时监测吸盘内的压力值,根据果实的大小和重量自动调整负压强度,确保抓取稳定且不会损伤果实。对于表面不平整的果实,吸盘边缘的波纹设计可增强密封效果。在实际作业中,吸盘装置每小时可完成 1500 - 2000 次抓取动作,抓取成功率达 98% 以上,且对果实表皮无任何损伤,极大地提高了圆形果实的采摘效率和品质。其研发的智能采摘机器人,在现代农业园区中发挥着重要作用,助力农业高效生产。
智能采摘机器人可与果园灌溉、施肥系统联动。通过物联网技术,智能采摘机器人与果园灌溉、施肥系统形成一体化管理网络。机器人内置的土壤湿度传感器、作物生长状态监测模块,能实时采集果园土壤墒情、果实生长数据,并将信息同步至管理平台。当机器人检测到某区域果树需水量增加时,系统会自动触发滴灌设备,控制灌溉量;若发现果实生长阶段需补充特定养分,施肥系统将根据机器人采集的土壤肥力数据,配比并输送合适的肥料。在陕西苹果园中,智能采摘机器人通过识别不同树龄果树的果实密度,联动施肥系统为结果量大的果树增加有机肥供给,同时调整灌溉频率,使苹果单果重量提升 15%,实现资源的高效利用。轻巧型 7 自由度机械臂,由熙岳智能设计,轻松完成路径规划、采摘和放篮等多个任务。浙江番茄智能采摘机器人价格低
熙岳智能的智能采摘机器人,可利用人工智能自动识别果实成熟度,极大提升采摘效率。农业智能采摘机器人按需定制
基于深度学习技术,机器人可不断优化采摘效率。深度学习技术为智能采摘机器人的性能提升提供了强大动力。机器人在采摘作业过程中,会不断收集各种数据,包括采摘环境信息、果实特征数据、自身操作动作和相应的采摘结果等。这些海量的数据被传输至机器人的深度学习模型中,模型通过复杂的神经网络结构对数据进行分析和学习。在学习过程中,模型会不断调整内部参数,寻找的决策策略和操作模式,以提高采摘的准确性和效率。例如,通过对大量采摘数据的学习,模型可以发现不同光照条件下果实识别的参数,或者找到在特定地形下机械臂运动的快捷路径。随着作业时间的增加和数据积累的增多,深度学习模型会不断进化和优化,使机器人的采摘效率逐步提升,作业表现越来越出色。这种基于深度学习的自我优化能力,让智能采摘机器人能够不断适应变化的作业环境,持续保持高效的工作状态。农业智能采摘机器人按需定制