在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 MnlI 便是其中一位“独特工具”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。MnlI 的识别序列是“CC↓SGG”,其中“S”可以是胞嘧啶(C)或鸟嘌呤(G)。这种识别序列的灵活性使得 MnlI 能够在多个位点进行切割,同时保持较高的特异性。MnlI 会在识别序列的第 4 位和第 5 位之间切断 DNA 链,产生黏性末端。这种黏性末端的特性使得 MnlI 在基因克隆和重组 DNA 构建中具有独特的优势。黏性末端可以与其他具有互补序列的 DN片段通过碱基配对结合,再利用 DNA 连接酶进行连接,从而构建出新的重组 DNA 分子。在基因工程中,MnlI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 MnlI 成为基因工程中比较常用的工具酶之一。MnlI 的另一个重要应用是基因分析。通过观察 MnlI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。尽管Ultra-Long Master Mix设计用于长片段扩增,但在某些情况下,可能出现非特异性扩增,需要通过优化引物。Recombinant Human Fc gamma RIIIA/CD16a (F176)(His-Avi Tag)
在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 KpnI 便是其中一位“关键工具”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。KpnI 的识别序列是“GGTAC^C”,这一序列在基因组中相对常见,使得 KpnI 能够在多个位点进行切割。它会在“^”标记的位置将 DNA 链切断,产生黏性末端。这种黏性末端的特性使得 KpnI 在基因克隆和重组 DNA 构建中具有独特的优势。黏性末端可以与其他具有互补序列的 DN片段通过碱基配对结合,再利用 DNA 连接酶进行连接,从而构建出新的重组 DNA 分子。在基因工程中,KpnI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 KpnI 成为基因工程中比较常用的工具酶之一。KpnI 的另一个重要应用是基因分析。通过观察 KpnI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。Recombinant Human BST1 Protein,His Tag其作用位点相对局限,主要作用于高甘露糖型和部分杂合型 N - 连接糖链,对于复杂型 N - 连接糖链的作用较弱。
robe qPCR Mix (2×, High ROX):高特异性与强校正能力的qPCR解决方案Probe qPCR Mix (2×, High ROX) 是一种为实时荧光定量PCR(qPCR)设计的即用型预混液,特别适用于需要高浓度ROX校正染料的qPCR仪器。该预混液结合了热启动Taq DNA聚合酶、优化的反应缓冲液、dNTPs以及高浓度ROX,能够实现高效、特异的基因定量检测。产品特点高特异性和灵敏度:采用热启动Taq DNA聚合酶,结合抗体或化学修饰技术,有效减少非特异性扩增,提高检测灵敏度。高浓度ROX校正:含有高浓度ROX染料,适用于需要高浓度ROX作为校正染料的qPCR仪器,如ABI 7000、7900HT等。防污染系统:部分产品含有dUTP和UNG(尿嘧啶DNA糖基化酶),能够有效降解含尿嘧啶的PCR产物,防止假阳性。快速反应:支持快速qPCR程序,可在短时间内完成检测,提高实验效率。操作简便:2×预混液设计,只需加入引物、探针和模板即可进行反应,减少了操作步骤和污染风险。应用场景基因表达分析:用于定量检测特定基因的表达水平。病原体检测:快速检测病毒、细菌等病原体的DNA。SNP分型和拷贝数变异分析:通过探针法实现高特异性的基因分型。多重qPCR:可在同一反应中同时检测多个目标基因。
在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 BsmI 便是其中一位“精细剪刀”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。BsmI 的识别序列是“TGT↓[CA]”,其中方括号表示该位置可以是胞嘧啶(C)或腺嘌呤(A)。这种识别序列的灵活性使得 BsmI 能够在多个位点进行切割,同时保持较高的特异性。它会在识别序列的第 3 位和第 4 位之间切断 DNA 链,产生黏性末端。这种黏性末端的特性使得 BsmI 在基因克隆和重组 DNA 构建中具有独特的优势。黏性末端可以与其他具有互补序列的 DN片段通过碱基配对结合,再利用 DNA 连接酶进行连接,从而构建出新的重组 DNA 分子。在基因工程中,BsmI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 BsmI 成为基因工程中比较常用的工具酶之一。BsmI 的另一个重要应用是基因分析。通过观察 BsmI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。Cas9 NLS可用于体外实验中筛选能够高效引导Cas9蛋白进行DNA剪切的gRNA序列 。
在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 BsrGI 便是其中一位“高效切割手”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。BsrGI 的识别序列是“TGT↓[CA]”,其中方括号表示该位置可以是胞嘧啶(C)或腺嘌呤(A)。这种识别序列的灵活性使得 BsrGI 能够在多个位点进行切割,同时保持较高的特异性。它会在识别序列的第 3 位和第 4 位之间切断 DNA 链,产生黏性末端。这种黏性末端的特性使得 BsrGI 在基因克隆和重组 DNA 构建中具有独特的优势。黏性末端可以与其他具有互补序列的 DN片段通过碱基配对结合,再利用 DNA 连接酶进行连接,从而构建出新的重组 DNA 分子。在基因工程中,BsrGI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 BsrGI 成为基因工程中比较常用的工具酶之一。BsrGI 的另一个重要应用是基因分析。通过观察 BsrGI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。FnCas12a在切割DNA时产生黏性末端,有助于提高同源定向修复(HDR)的效率。Insulin alpha-chain (1-13)
Pfu酶能够在高温条件下保持活性,在95℃孵育1小时后,仍能保持90%以上的活性特性使其在PCR反应中表现出色。Recombinant Human Fc gamma RIIIA/CD16a (F176)(His-Avi Tag)
在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 BspHI 便是其中一位“精细刻刀”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。BspHI 的识别序列是“T^CGA”,这一序列在基因组中相对常见,使得 BspHI 能够在多个位点进行切割。它会在“^”标记的位置将 DNA 链切断,产生黏性末端。这种黏性末端的特性使得 BspHI 在基因克隆和重组 DNA 构建中具有独特的优势。黏性末端可以与其他具有互补序列的 DN片段通过碱基配对结合,再利用 DNA 连接酶进行连接,从而构建出新的重组 DNA 分子。在基因工程中,BspHI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 BspHI 成为基因工程中比较常用的工具酶之一。BspHI 的另一个重要应用是基因分析。通过观察 BspHI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。Recombinant Human Fc gamma RIIIA/CD16a (F176)(His-Avi Tag)