SYBR Green qPCR Mix (2×, UDG Plus):高效防污染的实时定量PCR解决方案SYBR Green qPCR Mix (2×, UDG Plus) 是一种为实时荧光定量PCR(qPCR)设计的2×预混液,结合了SYBR Green I荧光染料和尿嘧啶-DNA糖基化酶(UDG)技术,能够有效防止PCR产物污染,提高检测的特异性和准确性。产品特点高特异性和灵敏度:采用抗体修饰的热启动Taq DNA聚合酶,结合优化的反应缓冲液,有效减少非特异性扩增,提高检测灵敏度。防污染设计:预混液中包含UDG酶和dUTP,可在PCR反应前降解含尿嘧啶的PCR产物,防止交叉污染。通用性:含有ROX被动参考染料,适用于所有qPCR仪器,无需根据仪器调整ROX浓度。可视化示踪:部分产品含有蓝色示踪染料,加入模板后颜色变化可防止加样错误。应用场景基因表达分析:用于定量检测基因表达水平。病原体检测:快速检测病毒、细菌等病原体的DNA。多重检测:可在同一反应中同时检测多个目标基因。SYBR Green qPCR Mix (2×, UDG Plus) 以其高效、特异和防污染的特点,成为分子生物学研究和临床检测中的重要工具,尤其适用于需要高灵敏度和防污染的qPCR实验。在生物技术的微观世界里,限制性核酸内切酶是基因工程中不可或缺的工具。Recombinant Cynomolgus NGAL/Lipocalin-2 Protein,His Tag
在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 MboI 便是其中一位“精细剪刀”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。MboI 的识别序列是“GATC”,这一序列在基因组中相对常见,使得 MboI 能够在多个位点进行切割。它会在识别序列的中心位置切断 DNA 链,产生平末端(blunt ends)。这种平末端的特性使得 MboI 在基因克隆和重组 DNA 构建中具有独特的优势。平末端可以与其他平末端的 DN片段直接连接,而不需要依赖于黏性末端的互补配对,这为某些特定的克隆策略提供了灵活性。在基因工程中,MboI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 MboI 成为基因工程中比较常用的工具酶之一。MboI 的另一个重要应用是基因分析。通过观察 MboI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。RsaITaq DNA Polymerase 能够在相对较高的温度下保持稳定,其适催化温度在75-80°C。
dNTP/dUTP Mixture是一种特殊的核苷酸混合物,包含四种脱氧核苷三磷酸(dATP、dCTP、dTTP、dGTP)和脱氧尿苷三磷酸(dUTP),其中每种dNTP浓度为2.5 mM,dUTP浓度为5 mM。这种独特的配方使其在分子生物学实验中具有广泛的应用价值,尤其是在需要结合传统DNA合成与尿嘧啶标记的场景中。产品特点dNTP/dUTP Mixture结合了传统dNTP和dUTP的优势,提供了一种多功能的DNA合成试剂。其配方中dNTP浓度为2.5 mM,dUTP浓度为5 mM,能够满足常规PCR、DNA标记、基因编辑等多种实验需求。这种混合物经过严格的质量控制,确保纯度和稳定性,能够为DNA合成提供高质量的原料保障。此外,dUTP的存在为实验提供了额外的功能,例如通过尿嘧啶标记实现DNA的特异性检测或后续处理。这种混合物的高浓度设计减少了实验中试剂的添加量,降低了污染风险,同时便于实验人员根据具体需求进行稀释和使用。应用场景dNTP/dUTP Mixture广应用于以下领域:PCR反应:在常规PCR中,dNTP/dUTP Mixture可用于DNA扩增,同时引入dUTP标记,便于后续的DNA检测或热启动应用。
在基因工程的微观世界中,限制性核酸内切酶是科学家们不可或缺的工具,而AvaII便是其中一位“关键刻刀”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。AvaII的识别序列是“G^GWCC”,其中“W”突出腺嘌呤(A)或胸腺嘧啶(T)。这种序列的识别特性使得AvaII能够在特定位置进行切割,产生黏性末端。这种黏性末端的特性使得AvaII在基因克隆和重组DNA构建中具有独特的优势。在基因工程中,AvaII的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过DNA连接酶将切割后的基因片段与载体DNA连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割能力使得AvaII成为处理复杂基因组时的理想选择。AvaII的另一个重要应用是基因分析。通过观察AvaII对不同DNA样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。例如,在某些遗传病的研究中,AvaII可以用来检测基因突变,帮助科学家更好地理解疾病的遗传机制。AvaII的发现和应用是分子生物学领域的一大进步。牛痘DNA拓扑异构酶I的反应温度为37°C。在这个温度下,酶的活性高,能够有效地进行DNA的切割和连接。
在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 HhaI 便是其中一位“精细剪刀”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。HhaI 的识别序列是“G^CGC”,这一序列在基因组中相对罕见,使得 HhaI 的切割位点相对稀少。这种稀有性使得 HhaI 在处理复杂基因组时具有独特的优势,能够避免过度切割导致的片段过小或信息丢失。HhaI 会在识别序列的第 4 位和第 5 位之间切断 DNA 链,产生黏性末端。这种黏性末端的特性使得 HhaI 在基因克隆和重组 DNA 构建中具有独特的优势。黏性末端可以与其他具有互补序列的 DN片段通过碱基配对结合,再利用 DNA 连接酶进行连接,从而构建出新的重组 DNA 分子。在基因工程中,HhaI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 HhaI 成为基因工程中比较常用的工具酶之一。HhaI 的另一个重要应用是基因分析。通过观察 HhaI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。与Taq DNA Polymerase不同,Pfu DNA Polymerase产生的PCR产物为平滑末端,无3'端"A"突出。Recombinant Human IFN alpha/beta R1 Protein,His-Avi Tag
Taq DNA Polymerase 是一种广泛应用于分子生物学研究中的热稳定DNA聚合酶性能和特点使其成为PCR技术的工具。Recombinant Cynomolgus NGAL/Lipocalin-2 Protein,His Tag
在现代分子生物学和基因工程领域,限制性核酸内切酶是科学家们不可或缺的工具,而 HaeIII 无疑是其中一位“经典刻刀”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着重要作用。HaeIII 的识别序列是“GG^CC”,这一序列在基因组中相对常见,使得 HaeIII 能够在多个位点进行切割。它会在识别序列的第 4 位和第 5 位之间切断 DNA 链,产生平末端(blunt ends)。这种平末端的特性使得 HaeIII 在基因克隆和重组 DNA 构建中具有独特的优势。平末端可以与其他平末端的 DN片段直接连接,而不需要依赖于黏性末端的互补配对,这为某些特定的克隆策略提供了灵活性。在基因工程中,HaeIII 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这种精细的切割和连接能力使得 HaeIII 成为基因工程中比较常用的工具酶之一。HaeIII 的另一个重要应用是基因分析。通过观察 HaeIII 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。Recombinant Cynomolgus NGAL/Lipocalin-2 Protein,His Tag