当激光光束焦点的位置在镜面上,此时被反射的激光在无限空间中成为准直光束,并在OBJ2的焦平面上形成了一个激光光斑。同理,如果横向扫描光束,则会形成远离倾斜镜镜面的焦点,这又导致返回的光束会聚或发散,进而OBJ2能在轴向不同位置形成焦点,通过这种方式即能实现连续的轴向扫描。对于较小的倾斜角,聚焦没有球差。该组在实验中表征了这种将横向扫描转换为轴向扫描技术的光学性能,并使用它将光片显微镜的成像速度提升了一个数量级,从而可以在三个维度上量化快速的囊泡动力学。该组还演示了使用双光子光栅扫描显微镜以12kHz进行共振远程聚焦,该技术可对大脑组织和斑马鱼心脏动力学进行快速成像,并具有衍射极限的分辨率。多光子显微镜涉及医学、生物学、化学、物理学、电子学、工程学等学科,生产工艺相对复杂,进入门槛较高。荧光多光子显微镜设备
多束扫描技术可以同时对神经元组织的不同位置进行成像对两个远距离(相距大于1-2mm)的成像部位,通常使用两条单独的路径进行成像;对于相邻区域,通常使用单个物镜的多光束进行成像。多光束扫描技术必须特别注意激发光束之间的串扰问题,这个问题可以通过事后光源分离方法或时空复用方法来解决。事后光源分离方法指的是用算法来分离光束消除串扰;时空复用方法指的是同时使用多个激发光束,每个光束的脉冲在时间上延迟,这样就可以暂时分离被不同光束激发的单个荧光信号。引入越多路光束就可以对越多的神经元进行成像,但是多路光束会导致荧光衰减时间的重叠增加,从而限制了区分信号源的能力;并且多路复用对电子设备的工作速率有很高的要求;大量的光束也需要更高的激光功率来维持近似单光束的信噪比,这会容易导致组织损伤。荧光多光子显微镜设备双光子显微镜可以在保持细胞活性的情况下进行成像,这对于研究细胞生理学和生物化学过程非常有用。
对于两个远距离(相距1-2mm以上)的成像部位,通常采用两个**的路径进行成像;对于相邻区域,通常使用单个物镜的多个光束进行成像。多光束扫描技术必须特别注意激发光束之间的串扰,这可以通过事后光源分离或时空复用来解决。事后光源分离法是指分离光束以消除串扰的算法;时空复用法是指同时使用多个激发光束,每个光束的脉冲在时间上被延迟,使不同光束激发的单个荧光信号可以暂时分离。引入的光束越多,可以成像的神经元越多,但多束会导致荧光衰减时间重叠增加,从而限制了分辨信号源的能力;并且复用对电子设备的工作速度要求很高;大量的光束也需要较高的激光功率来维持单束的信噪比,这样容易导致组织损伤。
对于双光子(2P)成像,散焦和近表面荧光激发是两个相对较大的深度限制因素,而对于三光子(3P)成像,这两个问题**减少。然而,由于荧光团的吸收截面远小于2P,三光子成像需要更高的脉冲能量才能获得与2P相同激发强度的荧光信号。功能性3P显微镜比结构性3P显微镜要求更高,后者需要更快的扫描速度以便及时采样神经元活动。为了在每个像素的停留时间内收集足够的信号,需要更高的脉冲能量。复杂的行为通常涉及大规模的大脑神经网络,这些网络既有本地连接,也有远程连接。为了将神经元的活动与行为联系起来,需要同时监测***分布的超大型神经元的活动。大脑中的神经网络将在几十毫秒内处理输入的刺激。为了理解这种快速神经元动力学,MPM需要快速成像神经元的能力。快速MPM方法可分为单束扫描技术和多束扫描技术。目前中国显微镜中如多光子显微镜、共聚焦扫描和电子显微镜等。
单光子激发荧光的过程,就是荧光分子吸收一个光子,从基态跃迁到激发态,跃迁以后,能量较大的激发态分子,通过内转换把部分能量转移给周围的分子,自己回到比较低电子激发态的比较低振动能级。处于比较低电子激发态的比较低振动能级的分子的平均寿命大约在10s左右。这时它不是通过内转换的方式来消耗能量,回到基态,而是通过发射出相应的光量子来释放能量,回到基态的各个不同的振动能级时,就发射荧光。因为在发射荧光以前已经有一部分能量被消耗,所以发射的荧光的能量要比吸收的能量小,也就是荧光的特征波长要比吸收的特征波长来的长。多光子显微镜的发展现状及未来发展趋势。共聚焦多光子显微镜供应商
多光子显微镜技术是对完整组织进行深层荧光成像的优先技术。荧光多光子显微镜设备
在多光子显微镜(也称为非线性或双光子显微镜)中,以两倍正常激发波长照射样品。更长的波长是有利的,因为它们可以更深地穿透样品进行3D成像,并且因为它们不会损坏样品,从而延长样品寿命。为了实现多光子激发,照明光束在空间上聚焦(使用光学器件),同时使用高能短脉冲激发光束以提高两个(或更多)光子同时到达同一位置(即荧光团分子)的概率。多光子显微技术的例子包括二次谐波产生(SHG)、三次谐波产生(THG)、相干反斯托克斯拉曼光谱(CARS)和受激发射耗尽(STED)显微技术。由于这些技术中的每一种都使用脉冲激光器,因此选择能够比较大限度地减少脉冲色散的光学组件很重要,并且激光反射二向色镜应具有低GDD特性。荧光多光子显微镜设备