相较于传统微光显微镜,InGaAs(铟镓砷)微光显微镜在检测先进制程组件微小尺寸组件的缺陷方面具有更高的适用性。其原因在于,较小尺寸的组件通常需要较低的操作电压,这导致热载子激发的光波长增长。InGaAs微光显微镜特别适合于检测先进制程产品中的亮点和热点(HotSpot)定位。InGaAs微光显微镜与传统EMMI在应用上具有相似性,但InGaAs微光显微镜在以下方面展现出优势:
1.侦测到缺陷所需时间为传统EMMI的1/5~1/10;
2.能够侦测到微弱电流及先进制程中的缺陷;
3.能够侦测到较轻微的MetalBridge缺陷;
4.针对芯片背面(Back-Side)的定位分析中,红外光对硅基板具有较高的穿透率。 它尝试通过金属层边缘等位置的光子来定位故障点,解决了复杂的检测难题。厂家微光显微镜选购指南
芯片制造工艺复杂精密,从设计到量产的每一个环节都可能潜藏缺陷,而失效分析作为测试流程的重要一环,是拦截不合格产品、追溯问题根源的 “守门人”。微光显微镜凭借其高灵敏度的光子探测技术,能够捕捉到芯片内部因漏电、热失控等故障产生的微弱发光信号,定位微米级甚至纳米级的缺陷。这种检测能力,能帮助企业快速锁定问题所在 —— 无论是设计环节的逻辑漏洞,还是制造过程中的材料杂质、工艺偏差,都能被及时发现。这意味着企业可以针对性地优化生产工艺、改进设计方案,从而提升芯片良率。在当前芯片制造成本居高不下的背景下,良率的提升直接转化为生产成本的降低,让企业在价格竞争中占据更有利的位置。国产微光显微镜价格静电放电破坏半导体器件时,微光显微镜侦测其光子可定位故障点,助分析原因程度。
企业用户何如去采购适合自己的设备?
功能侧重的差异,让它们在芯片检测中各司其职。微光显微镜的 “专长” 是识别电致发光缺陷,对于逻辑芯片、存储芯片等高密度集成电路中常见的 PN 结漏电、栅氧击穿、互连缺陷等细微电性能问题,它能提供的位置信息,是芯片失效分析中定位 “电故障” 的工具。
例如,在 7nm 以下先进制程芯片的检测中,其高灵敏度可捕捉到单个晶体管异常产生的微弱信号,为工艺优化提供关键依据。
热红外显微镜则更关注 “热失控” 风险,在功率半导体、IGBT 等大功率器件的检测中表现突出。这类芯片工作时功耗较高,散热性能直接影响可靠性,短路、散热通道堵塞等问题会导致局部温度骤升,热红外显微镜能快速生成热分布图谱,直观呈现热点位置与温度梯度,帮助工程师判断散热设计缺陷或电路短路点。在汽车电子等对安全性要求极高的领域,这种对热异常的敏锐捕捉,是预防芯片失效引发安全事故的重要保障。
对半导体研发工程师而言,排查的过程层层受阻。在逐一排除外围电路异常、生产工艺制程损伤等潜在因素后,若仍未找到症结,往往需要芯片原厂介入,通过剖片分析深入探究内核。
然而,受限于专业分析设备的缺乏,再加上芯片内部设计涉及机密,工程师难以深入了解其底层构造,这就导致他们在面对原厂出具的分析报告时,常常陷入 “被动接受” 的局面 —— 既无法完全验证报告的细节,也难以基于自身判断提出更具针对性的疑问或补充分析方向。 我司自研含微光显微镜等设备,获多所高校、科研院所及企业认可使用,性能佳,广受赞誉。
致晟光电将热红外显微镜(Thermal EMMI)与微光显微镜 (EMMI) 集成的设备,在维护成本控制上展现出优势。对于分开的两台设备,企业需配备专门人员分别学习两套系统的维护知识,培训内容涵盖不同的机械结构、光学原理、软件操作,还包括各自的故障诊断逻辑与校准流程,往往需要数月的系统培训才能确保人员熟练操作,期间产生的培训费用、时间成本居高不下。而使用一套集成设备只需一套维护体系,维护人员只需掌握一套系统的维护逻辑与操作规范,无需在两套差异化的设备间切换学习,培训周期可缩短近一半,大幅降低了培训方面的人力与资金投入。
我司微光显微镜分析 PCB/PCBA 失效元器件周围光子,可判断其是否失效及类型位置,提高维修效率、降低成本。微光显微镜新款
其低噪声电缆连接设计,减少信号传输过程中的损耗,确保微弱光子信号完整传递至探测器。厂家微光显微镜选购指南
EMMI 微光显微镜作为集成电路失效分析的重要设备,其漏电定位功能对于失效分析工程师而言是不可或缺的工具。在集成电路领域,对芯片的可靠性有着极高的要求。在芯片运行过程中,微小漏电现象较为常见,且在特定条件下,这些微弱的漏电可能会被放大,导致芯片乃至整个控制系统的失效。因此,芯片微漏电现象在集成电路失效分析中占据着至关重要的地位。此外,考虑到大多数集成电路的工作电压范围在3.3V至20V之间,工作电流即便是微安或毫安级别的漏电流也足以表明芯片已经出现失效。因此,准确判断漏流位置对于确定芯片失效的根本原因至关重要。 厂家微光显微镜选购指南