同时,微光显微镜(EMMI)带来的高效失效分析能力,能大幅缩短研发周期。在新产品研发阶段,快速发现并解决失效问题,可避免研发过程中的反复试错,加快产品从实验室走向市场的速度。当市场需求瞬息万变时,更快的研发响应速度意味着企业能抢先推出符合市场需求的产品,抢占市场先机。例如,在当下市场 5G 芯片、AI 芯片等领域,技术迭代速度极快,谁能更早解决研发中的失效难题,谁就能在技术竞争中争先一步,建立起差异化的竞争优势。我司微光显微镜探测芯片封装打线及内部线路短路产生的光子,快速定位短路位置,优势独特。直销微光显微镜新款
EMMI的本质只是一台光谱范围广,光子灵敏度高的显微镜。
但是为什么EMMI能够应用于IC的失效分析呢?
原因就在于集成电路在通电后会出现三种情况:1.载流子复合;2.热载流子;3.绝缘层漏电。当这三种情况发生时集成电路上就会产生微弱的荧光,这时EMMI就能捕获这些微弱荧光,这就给了EMMI一个应用的机会而在IC的失效分析中,我们给予失效点一个偏压产生荧光,然后EMMI捕获电流中产生的微弱荧光。原理上,不管IC是否存在缺陷,只要满足其机理在EMMI下都能观测到荧光 工业检测微光显微镜规格尺寸我司自主研发的桌面级设备其紧凑的机身设计,可节省实验室空间,适合在小型研发机构或生产线上灵活部署。
在微光显微镜(EMMI) 操作过程中,当对样品施加合适的电压时,其失效点会由于载流子加速散射或电子-空穴对复合效应而发射特定波长的光子。这些光子经过采集和图像处理后,可以形成一张信号图。随后,取消施加在样品上的电压,在未供电的状态下采集一张背景图。再通过将信号图与背景图进行叠加处理,就可以精确地定位发光点的位置,实现对失效点的精确定位。进一步地,为了提升定位的准确性,可采用多种图像处理技术进行优化。例如,通过滤波算法去除背景噪声,增强信号图的信噪比;利用边缘检测技术,突出显示发光点的边缘特征,从而提高定位精度。
微光显微镜技术特性差异
探测灵敏度方向:EMMI 追求对微弱光子的高灵敏度(可检测单光子级别信号),需配合暗场环境减少干扰;热红外显微镜则强调温度分辨率(部分设备可达 0.01℃),需抑制环境热噪声。
空间分辨率:EMMI 的分辨率受光学系统和光子波长限制,通常在微米级;热红外显微镜的分辨率与红外波长、镜头数值孔径相关,一般略低于 EMMI,但更注重大面积热分布的快速成像。
样品处理要求:EMMI 对部分遮蔽性失效(如金属下方漏电)需采用背面观测模式,可能需要减薄、抛光样品;
处理要求:热红外显微镜可透过封装材料(如陶瓷、塑料)探测,对样品破坏性较小,更适合非侵入式初步筛查。 微光显微镜的快速预热功能,可缩短设备启动至正常工作的时间,提高检测效率。
微光显微镜无法检测不产生光子的失效(如欧姆接触、金属短路),且易受强光环境干扰;热红外显微镜则难以识别无明显温度变化的失效(如轻微漏电但功耗极低的缺陷),且温度信号可能受环境热传导影响。
实际分析中,二者常结合使用,通过 “光 - 热” 信号交叉验证,提升失效定位的准确性。致晟光电在技术创新的征程中,实现了一项突破性成果 —— 将热红外显微镜与微光显微镜集可以集成于一台设备,只需一次采购,便可以节省了重复的硬件投入。 其内置的图像分析软件,可测量亮点尺寸与亮度,为量化评估缺陷严重程度提供数据。国产微光显微镜
微光显微镜支持宽光谱探测模式,探测范围从紫外延伸至近红外,能满足不同材料的光子检测,适用范围更广。直销微光显微镜新款
为了让客户对设备品质有更直观的了解,我们大力支持现场验货。您可以亲临我们的实验室,近距离观察设备的外观细节,亲身操作查验设备的运行性能、精度等关键指标。每一台设备都经过严格的出厂检测,我们敢于将品质摆在您眼前,让您在采购前就能对设备的实际状况了然于胸,消除后顾之忧。一位来自汽车零部件厂商的客户分享道:“之前采购设备总担心实际性能和描述有差距,在致晟光电现场验货时,工作人员耐心陪同我们测试,设备的精度和稳定性都超出预期,这下采购心里踏实多了。”直销微光显微镜新款