通过大量海量热图像数据,催生出更智能的数据分析手段。借助深度学习算法,构建热图像识别模型,可快速准确地从复杂热分布中识别出特定热异常模式。如在集成电路失效分析中,模型能自动比对正常与异常芯片的热图像,定位短路、断路等故障点,有效缩短分析时间。在数据处理软件中集成热传导数值模拟功能,结合实验测得的热数据,反演材料内部热导率、比热容等参数,从热传导理论层面深入解析热现象,为材料热性能研究与器件热设计提供量化指导。热红外显微镜可捕捉物体热辐射,助力电子元件热分布与散热性分析。锁相热红外显微镜方案设计
热红外显微镜(Thermal EMMI) 图像分析是通过探测物体自身发出的红外辐射,将其转化为可视化图像,进而分析物体表面温度分布等信息的技术。其原理是温度高于零度的物体都会向外发射红外光,热红外显微镜通过吸收这些红外光,利用光电转换将其变为温度图像。物体内电荷扰动会产生远场辐射和近场辐射,近场辐射以倏逝波形式存在,强度随远离物体表面急剧衰退,通过扫描探针技术可散射近场倏逝波,从而获取物体近场信息,实现超分辨红外成像。低温热热红外显微镜热红外显微镜可用于研究电子元件在不同环境下的热行为 。
致晟光电热红外显微镜的软件算法优化,信号处理逻辑也是其竞争力之一。
其搭载的自适应降噪算法,能通过多帧信号累积与特征学习,精细识别背景噪声的频谱特征 —— 无论是环境温度波动产生的低频干扰,还是电子元件的随机噪声,都能被针对性滤除,使信噪比提升 2-3 个数量级。
针对微弱热信号提取,算法内置动态阈值调节机制,结合热信号的时域相关性与空间分布特征,可从噪声中剥离 0.05mK 级的微小温度变化,即使纳米尺度结构的隐性感热信号也能被清晰捕捉。同时,软件支持热分布三维建模、温度梯度曲线分析、多区域热演化对比等多元功能,通过直观的可视化界面呈现数据 —— 从热点定位的微米级标记到热传导路径的动态模拟,为用户提供从信号提取到深度分析的全流程支持,大幅提升微观热分析效率。
热红外显微镜是半导体失效分析与缺陷定位的三大主流手段之一(EMMI、THERMAL、OBIRCH),通过捕捉故障点产生的异常热辐射,实现精细定位。存在缺陷或性能退化的器件通常表现为局部功耗异常,导致微区温度升高。显微热分布测试系统结合热点锁定技术,能够高效识别这些区域。热点锁定是一种动态红外热成像方法,通过调节电压提升分辨率与灵敏度,并借助算法优化信噪比。在集成电路(IC)分析中,该技术广泛应用于定位短路、ESD损伤、缺陷晶体管、二极管失效及闩锁问题等关键故障。 热红外显微镜借助图像分析技术,直观展示电子设备热分布状况 。
热红外显微镜(Thermal EMMI) 也是科研与教学领域的利器,其设备能捕捉微观世界的热信号。它将红外探测与显微技术结合,呈现物体表面温度分布,分辨率达微米级,可观察半导体芯片热点、电子器件热分布等。非接触式测量是其一大优势,无需与被测物体直接接触,避免了对样品的干扰,适用于多种类型的样品检测。实时成像功能可追踪动态热变化,如材料相变、化学反应热释放。在高校,热红外显微镜助力多学科实验;在企业,为产品研发和质量检测提供支持,推动各领域创新突破。 国产热红外显微镜凭借自主研发软件,具备时域重构等功能,提升检测效率。制冷热红外显微镜图像分析
半导体芯片内部缺陷定位是工艺优化与失效分析的关键技术基础。锁相热红外显微镜方案设计
在国内失效分析设备领域,专注于原厂研发与生产的企业数量相对较少,尤其在热红外检测这类高精度细分领域,具备自主技术积累的原厂更为稀缺。这一现状既源于技术门槛 —— 需融合光学、红外探测、信号处理等多学科技术,也受限于市场需求的专业化程度,导致多数企业倾向于代理或集成方案。
致晟光电正是国内少数深耕该领域的原厂之一。不同于单纯的设备组装,其从中枢技术迭代入手,在传统热发射显微镜基础上进化出热红外显微镜,形成从光学系统设计、信号算法研发到整机制造的完整能力。这种原厂基因使其能深度理解国内半导体、材料等行业的失效分析需求,例如针对先进制程芯片的微小热信号检测、国产新材料的热特性研究等场景,提供更贴合实际应用的设备与技术支持,成为本土失效分析领域不可忽视的自主力量。 锁相热红外显微镜方案设计