此外,可靠的产品质量是企业赢得客户信任、巩固市场份额的基础。通过微光显微镜(EMMI)的严格检测,企业能确保交付给客户的芯片具备稳定的性能和较高的可靠性,减少因产品故障导致的客户投诉和返工或者退货风险。这种对质量的坚守,会逐渐积累成企业的品牌口碑,使客户在选择供应商时更倾向于信赖具备完善检测能力的企业,从而增强企业的市场竞争力。
微光显微镜不仅是一种检测工具,更是半导体企业提升产品质量、加快研发进度、筑牢品牌根基的战略资产。在全球半导体产业竞争日趋白热化的当今,配备先进的微光显微镜设备,将帮助企业在技术创新与市场争夺中持续领跑,构筑起难以复制的核心竞争力。 其内置的图像分析软件,可测量亮点尺寸与亮度,为量化评估缺陷严重程度提供数据。半导体失效分析微光显微镜图像分析
InGaAs微光显微镜与传统微光显微镜在原理和功能上具有相似之处,均依赖于电子-空穴对复合产生的光子及热载流子作为探测信号源。然而,InGaAs微光显微镜相较于传统微光显微镜,呈现出更高的探测灵敏度,并且其探测波长范围扩展至900nm至1700nm,而传统微光显微镜的探测波长范围限于350nm至1100nm。这一特性使得InGaAs微光显微镜具备更更好的波长检测能力,从而拓宽了其应用领域。进一步而言,InGaAs微光显微镜的这一优势使其在多个科研与工业领域展现出独特价值。在半导体材料研究中,InGaAs微光显微镜能够探测到更长的波长,这对于分析材料的缺陷、杂质以及能带结构等方面具有重要意义。IC微光显微镜规格尺寸在超导芯片检测中,可捕捉超导态向正常态转变时的异常发光,助力超导器件的性能优化。
需要失效分析检测样品,我们一般会在提前做好前期的失效背景调查和电性能验证工作,能够为整个失效分析过程找准方向、提供依据,从而更高效、准确地找出芯片失效的原因。
1.失效背景调查收集芯片型号、应用场景、失效模式(如短路、漏电、功能异常等)、失效比例、使用环境(温度、湿度、电压)等。确认失效是否可复现,区分设计缺陷、制程问题或应用不当(如过压、ESD)。
2.电性能验证使用自动测试设备(ATE)或探针台(ProbeStation)复现失效,记录关键参数(如I-V曲线、漏电流、阈值电压偏移)。对比良品与失效芯片的电特性差异,缩小失效区域(如特定功能模块)。
在微光显微镜(EMMI) 操作过程中,当对样品施加合适的电压时,其失效点会由于载流子加速散射或电子-空穴对复合效应而发射特定波长的光子。这些光子经过采集和图像处理后,可以形成一张信号图。随后,取消施加在样品上的电压,在未供电的状态下采集一张背景图。再通过将信号图与背景图进行叠加处理,就可以精确地定位发光点的位置,实现对失效点的精确定位。进一步地,为了提升定位的准确性,可采用多种图像处理技术进行优化。例如,通过滤波算法去除背景噪声,增强信号图的信噪比;利用边缘检测技术,突出显示发光点的边缘特征,从而提高定位精度。漏电结和接触毛刺会产生亮点,这些亮点产生的光子能被微光显微镜捕捉到。
微光显微镜下可以产生亮点的缺陷,
如:1.漏电结(JunctionLeakage);2.接触毛刺(Contactspiking);3.热电子效应(Hotelectrons);4.闩锁效应(Latch-Up);5.氧化层漏电(Gateoxidedefects/Leakage(F-Ncurrent));6.多晶硅晶须(Poly-siliconfilaments);7.衬底损伤(Substratedamage);8.物理损伤(Mechanicaldamage)等。
当然,部分情况下也会出现样品本身的亮点,
如:1.Saturated/Activebipolartransistors;2.SaturatedMOS/DynamicCMOS;3.Forwardbiaseddiodes/Reverse;等
出现亮点时应注意区分是否为这些情况下产生的亮点另外也会出现侦测不到亮点的情况,
如:1.欧姆接触;2.金属互联短路;3.表面反型层;4.硅导电通路等。
若一些亮点被遮蔽的情况,即为BuriedJunctions及Leakagesitesundermetal,这种情况可以尝试采用backside模式,但是只能探测近红外波段的发光,且需要减薄及抛光处理。 通过调节探测灵敏度,它能适配不同漏电流大小的检测需求,灵活应对多样的检测场景。实时成像微光显微镜牌子
支持自定义检测参数,测试人员可根据特殊样品特性调整设置,获得较为准确的检测结果。半导体失效分析微光显微镜图像分析
EMMI的本质只是一台光谱范围广,光子灵敏度高的显微镜。
但是为什么EMMI能够应用于IC的失效分析呢?
原因就在于集成电路在通电后会出现三种情况:1.载流子复合;2.热载流子;3.绝缘层漏电。当这三种情况发生时集成电路上就会产生微弱的荧光,这时EMMI就能捕获这些微弱荧光,这就给了EMMI一个应用的机会而在IC的失效分析中,我们给予失效点一个偏压产生荧光,然后EMMI捕获电流中产生的微弱荧光。原理上,不管IC是否存在缺陷,只要满足其机理在EMMI下都能观测到荧光 半导体失效分析微光显微镜图像分析