3.3.2.3基频信号能量比(E)100Hz基频分量时域信号能量占信号总能量的比值,计算公式:E=jmS1j2jmSj2,其中S1为100Hz基频分量的时域信号,Sj为原始信号,j为采样索引值。正常状态下,由于100Hz基频分量为声纹振动频谱图的主要成分,基频信号能量比应较大;存在故障时,谐波分量增加且峰值频率发生偏移,基频信号能量比变小。3.3.2.4互相关系数(r)正常状态与实测的声纹振动信号频谱图之间的相似度,计算公式:r=i=0N-1[Xi-X][Yi-Y]i=0N-1[Xi-X]2i=0N-1[Yi-Y]2,其中Xi和Yi分别为正常状态与实时测得声纹振动信号的频域分布,X和Y为对应信号的平均值,互相关系数范围为0~1。◆正常运行时,相关系数应接近于1。◆存在故障时,信号频率分布发生改变,互相关系数减小。杭州国洲电力科技有限公司振动声学指纹在线监测系统的用户培训支持。声学指纹在线监测监测卡
从经济效益角度来看,本系统的应用具有***的优势。现场可无人值守节省了大量的人工成本,长期来看,这一成本节省效果十分可观。同时,通过及时发现设备故障隐患,避免了设备因严重故障而需要进行大规模维修或更换,降低了设备维修成本。此外,系统的稳定运行保障了电力系统的可靠供电,减少了因停电导致的工业生产停滞、商业运营中断等间接经济损失,为电力企业和用户带来了巨大的经济效益,提高了电力系统的整体经济效益和竞争力。特色服务在线监测监测多少钱振动声学指纹在线监测技术怎样帮助企业实现节能减排目标?
智能算法在 GIS 设备机械性故障监测中也具有广阔的应用前景。利用机器学习算法,如支持向量机、人工神经网络等,对大量的振动和声学监测数据进行学习和训练。通过建立故障诊断模型,使算法能够自动识别设备的正常运行状态和各种机械性故障状态。例如,将历史监测数据中的正常状态数据和已知的机械性故障状态数据作为训练样本,训练人工神经网络模型。经过训练的模型可以对实时监测数据进行快速分析,准确判断设备是否存在机械性故障,并预测故障的发展趋势,为设备的维护和检修提供科学依据。
6.1.1层级概述1)AA局部放电及红外可视化二合一监测功能(可根据监测需求定制单一功能)的传感器,每台开关柜的电缆室内安装1个。传感器内置AA局部放电、红外可视化等监测的数据采集,信号调理,A/D转换,电源及通讯(支持LoRa、以太网等方式)等功能的模块,形态规格为:142mm*85mm*43mm。2)通讯管理机负责各个传感器传送的监测数据汇集传送至平台层的数据服务器。3)数据服务器、内置操控及监测数据分析软件的一体式工控计算机、向远端传送监测数据及分析结果的IEC61850标准通讯管理机。软件操作简单、扩展性强,可实时监测AA局部放电及红外热成像并具备态势分析、参量(最高温度、平均温度、温差、局部放电)阈值超限告警等功能,告警方式具有平台层现场声光、软件界面弹窗、短信等。杭州国洲电力科技有限公司振动声学指纹在线监测软件的升级与维护。
工控机安装于主控室内主控柜中,堪称整个系统的 “大脑”。它通过网络接收各子 IED 传输过来的数据,这些数据包含了来自特高频传感器和超声波传感器采集并经 IED 初步处理的信息。工控机强大的运算能力在此刻得以展现,它对这些海量数据进行综合分析处理。运用先进的算法,对数据进行深度挖掘,提取局部放电的关键特征参数。例如,通过对相位信息、放电量、放电次数等数据的分析,判断局部放电的发展趋势,为用户提供准确的设备状态评估,在保障电力系统安全运行方面发挥着**作用。杭州国洲电力科技有限公司有哪些在线监测产品。国产在线监测厂家现货
该技术在电磁干扰环境下,哪些监测参数会受影响?声学指纹在线监测监测卡
GZPD-01G型局部放电在线监测系统采用的UHF传感器工作频带在300MHz-2000MHz,对于一般的电力载波信号(1MHZ以下)、工频及谐波干扰(50-10kHZ)以及广播信号(100MHZ左右)等常见干扰源,可以有效避免。而且架空母线存在大量电晕放电,该类放电的频带不超过150Mhz,因而通过带通滤波器,可有效滤除电晕放电干扰,采集的信号信噪比很高。该系统集局部放电的监测、定位、报警功能于一身,可有效实现GIS局部放电连续在线监测。超声波检测:GIS发生局部放电时产生纳秒级上升前沿的放电脉冲,生成的电磁波在GIS气室内传播。放电区域内分子间剧烈撞击,会产生包括纵波、横波和表面波的声波,在宏观上表现为脉冲压力波,以纵波和横波的方式向四周传播,因此放电点可看作脉冲声波场源。可以通过超声波传感器接收局部放电产生的振动信号,来达到检测GIS内部局部放电目的。声学指纹在线监测监测卡