二、遵循标准(不限于下列标准)2.1GB/T4208外壳防护等级(IP代码)。2.2DL/T860变电站通信网络和系统。2.3DL/T1430变电设备在线监测系统技术导则。2.4DL/T1432.1变电设备在线监测装置检验规范第1部分:通用检验规范。2.5DL/T1498.1变电设备在线监测装置技术规范第1部分:通用技术规范。2.6DL/T1686六氟化硫高压断路器状态检修导则。2.7DL/T1687六氟化硫高压断路器状态评价导则。2.8DL/T1700隔离开关及接地开关状态检修导则。2.9Q/GDW383智能变电站技术导则。2.10Q/GDWZ414变电站智能化改造技术规范。2.11Q/GDW561输变电设备状态监测系统技术导则。2.12Q/GDW739输变电设备状态监测主站系统变电设备在线监测I1接口网络通信规范。2.13国家电网公司智能组合电器技术规范。杭州国洲电力科技有限公司振动声学指纹在线监测技术的技术突破点。变压器振动声学指纹在线监测监测原理图
3.3.1.1信号包络分析为提高在线监测的准确度,GZAFV-01系统的IED/主机通常采用高采样率获取声纹振动及驱动电机电流的信号,然而大量的数据不利于快速、准确存储与分析。因而采用包络分析,简化并反映原始信号特征,便于后续分析与处理。传统希尔伯特变换进行包络分析时存在提取深度不足、存在幅值偏差等问题,因此采用小波变换和希尔伯特变换结合的信号包络分析。声纹振动和电流的信号包络分析如下图3.5所示。
3.3.1.2信号包络重合度比对分析如下图3.6所示,信号包络分析后可快速实现历史信号重合度比对分析,更直观地判断OLTC运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算。当实时采集的与正常状态的信号包络互相关系数:◆接近1时,OLTC接近正常运行状态。◆接近0时,OLTC可能存在故障。 特色服务振动声学指纹在线监测监测机构杭州国洲电力科技有限公司振动声学指纹在线监测技术的环保效益分析。
综上所述,采用声纹振动法监测变压器OLTC、绕组及铁芯的状态,适用于带电监测/在线监测,与变压器无电气连接而不影响正常运行,有安装方便、安全、可靠等优点。我公司结合多年技术预研储备及现场技术服务经验,成功研制出GZAFV-01型声纹监测系统,既有固定安装的长期在线监测式,也有便携式的带电监测系统及可移动的在线重症监护式。GZAFV-01系统由声纹振动传感器、驱动电机电流传感器、数据采集装置(在线监测式:IED,便携/手持式:主机;下文皆用IED/主机简称)、云服务器、通讯单元及供电单元构成;操控及监测数据分析软件结合包络分析、重合度分析、小波分析、能量分布矩阵、时域信号频谱分析等多种算法,并提取故障诊断特征参量,在线状态下实现变压器OLTC、绕组及铁芯的健康态势评价与故障类型诊断。
技术背景GIS运行时,电流通过高压导体时产生的电动力引起振动,由于导体所受电动力正比于负载电流的平方,GIS本体振动产生的声纹振动信号的基频为100Hz。当存在机械故障时,声纹振动信号的频谱分布将发生改变,产生谐波分量。GIS本体机械型缺陷主要是指内部存在开关触头接触异常、导电杆接触不良、母线卡簧松动、屏蔽罩松动等异常时,在交变电场作用下发生异常振动,长期振动可能导致导电杆和绝缘件松动,易造成绝缘事故。异常振动还可能造成SF6气体泄漏,损坏绝缘子和绝缘支柱,影响外壳接地牢固,危及GIS运行安全。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的多功能集成。
声纹振动监测技术的应用意义GZAFV-01系统适用于GIS、AIS、隔离开关、开关柜等开关设备的带电监测、在线监测与故障诊断,不影响被测设备正常运行且无电气连接,主要意义如下:5.1采用带电监测/在线监测方式,不影响被测设备正常运行,降低了电网风险。5.2监测方式与被测设备无电气连接,具有安全、可靠、安装方便等优点。5.3采用独特的时域、包络、重合度比对、时频矩阵等分析法,并提峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量等特征参量,提高在线监测准确度。5.4内置基于海量典型样本的大数据和人工智能研判技术而建立的数据库,可真实反应被试品运行状态,有效诊断故障程度和类型。5.5符合智慧/智能型变电站建设原则,IED具备边缘计算能力,就地采集并处理声纹振动及电流信号,完成分析计算后根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传监测数据的分析结果。GZAFV-01型声纹振动监测系统(开关设备)高效检测和设备保护。GIS振动声学指纹在线监测欢迎选购
杭州国洲电力科技有限公司振动声学指纹在线监测技术的经济效益分析。变压器振动声学指纹在线监测监测原理图
3.1技术原理变压器振动主要包括OLTC切换时的瞬态振动、电流通过绕组时电动力引起的绕组振动、硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动、以及冷却装置工作时的振动。其中,由冷却系统引起的基本振动频率小于100Hz,不作为变压器的分析内容。变压器内部的声纹振动信号通过绝缘油、支撑单元、加强筋结构等多种途径传播至变压器外壁,可由安装于外壁的声纹振动传感器测得。
OLTC切换过程中,分接选择器动作、切换开关动作、动静触头碰撞等机械动作产生声纹振动信号,信号包含触头分合状态、三相触头是否同期、触头表面是否平整、切换是否到位等信息,可反映OLTC结构磨损、卡滞、松动、变形等故障。切换过程中若储能弹簧性能发生改变或储能过程中存在机构卡塞等现象,必然伴随着电机驱动力矩的变化,从而使驱动电机电流发生变化。因此,可通过监测驱动电机电流信号与声纹振动信号的结合分析,可更加有效的评价OLTC在线运行状态下的健康态势评价与故障类型诊断。 变压器振动声学指纹在线监测监测原理图