灾后电力设施快速巡检评估:大地震、台风等灾害发生后,电力系统需要在短时间内排查大量输电塔和变电站设备的位移损伤情况,以安排抢修恢复供电。传统靠人工逐一检查不仅耗时,也存在险情下人身安全风险。使用无人机视觉位移监测,可以在灾后极短时间对受灾区域的电力设施开展快速巡检。无人机无需道路通行条件即可机动抵达多处杆塔位置,从空中获取高分辨图像和三维点云数据,测量杆塔倾斜角度、导线垂度变化以及变压器等设备相对基础的位移。系统将各监测点数据实时传送至云平台,供指挥中心集中查看。毫米级精度使得即使轻微的移位也能被识别,不会遗漏隐患。通过这种方式,抢修指挥部能够在数小时内掌握成百上千处设施的受损状况,据此科学制定抢修优先级和调度资源,既加快了电力恢复速度,也确保了现场工作人员的安全。山地光伏场区边坡监测,多角度巡检预警滑坡保护设备安全。桥梁机器视觉位移监测仪系统
既有隧道结构保护监测:在城市改扩建工程中,新建深基坑可能与已运营的地铁隧道邻近。如果施工扰动导致隧道结构变形移位,将危及行车安全。通常既有隧道会布设位移计、收敛计等传感器进行监测,但这些点位有限且需要维护。无人机视觉监测能够作为有益补充,提供隧道结构整体的变形数据。利用运营间隙,小型无人机搭载测距相机进入隧道,在轨道两侧沿隧道走向飞行,获取隧道内壁和轨道的影像数据,建立隧道断面的基准模型。此后每隔数日重复巡航拍摄,系统比对新旧模型,可检测出隧道衬砌出现的毫米级位移或变形,以及钢轨轨距的细微变化。由于无人机可以自主避障并稳定控制姿态,监测过程对隧道正常运营不产生干扰。所有数据通过无线链路实时传送至地面监控中心,维保人员可随时掌握隧道状态。当监测显示隧道某区域变形超过阈值时,可立即通知地铁运营方减速或停运,并要求施工方暂停作业、采取降水减震等措施。这种技术手段为既有隧道提供了更有效的保护,确保新建工程不影响既有轨道交通的运营安全。安全机器视觉位移监测仪云平台排土场堆积体稳定监测,智能巡检防范矿渣垮塌事故。
古建筑地基沉降监测:许多古建筑经历百年风雨,地基可能出现下沉,引发墙体开裂、屋架变形等问题。传统地基沉降监测需要在建筑周边埋设水准点,人工测量,不只需要接近文物,对精度和频率也有限制。通过无人机视觉监测,可以安全高效地掌握古建筑地基沉降趋势。无人机在古建四周低空盘旋,拍摄基座、台基和墙根部位的影像,并测定这些部位相对于远处稳定参照的高度。将历次监测的三维模型进行对比分析,能精确算出建筑各部分的沉降量和差异沉降分布。毫米级精度让哪怕地基只下沉了2~3毫米也能被可靠识别 。监测全程无需在文物附近安装任何设备,避免了扰动。数据汇入云端的文物建筑监测平台,维修人员随时可调阅沉降曲线。如若发现某段地基沉降速率上升,文保部门即可针对性采取压密注浆、墩基托换等措施,加固基础,防止沉降继续恶化损害建筑结构。
相较传统位移计、测缝计等点位数据监测方式,星地遥感XDYG-EC视觉位移系统通过高频图像采集(可达25Hz),实现了多点同步位移监测和图像回传功能,为水利设施安全管理提供了更丰富的现场信息。系统支持监测标靶布设在坝体、护坡、桥墩、隧道等关键构造部位,通过算法自动识别标靶位置变化,输出水平与垂直位移数据,并通过边缘计算设备快速完成数据上传与告警判断。此外,系统自带夜视红外照明与视频录像功能,可结合图像识别辅助管理单位判断现场是否有崩塌、渗水、施工等宏观异常变化。在福建、四川、重庆等地已实际部署的项目中,视觉系统在提升监测精度的同时,也为远程视频巡查、应急响应等提供了直观、可信的一手图像资料。软弱地基高层建筑沉降监测,防止不均下沉危及结构安全。
基坑周边地表沉降监测:深基坑开挖往往导致周边地面发生一定程度的沉降。如果地表沉降过大,可能拉裂埋地管线、塌陷路面,影响城市正常运行。施工单位通常布设沉降观测点来监测四周地表下沉,但点位有限且需要人力反复测量。利用无人机技术,可以对基坑周边大片区域进行快速的地表沉降监测。无人机沿基坑边缘和附近街区飞行,获取地面和道路的影像,通过数字摄影测量得到高精度的地面高程模型。对比不同时期模型,系统能够绘制出周边沉降槽的发展形态,精确测出max沉降值及沉降范围扩展速度,分辨率远高于人工水准测量。监测结果实时上传云端供各相关方查看。如发现某管线廊道上方地面在短期内出现累计几厘米的下沉,系统将立即报警 。施工方据此可加强对地下管线的保护,例如暂停降水、回填注浆,或提前更改施工工法,以避免地下管道因过度拉伸而破裂,防范次生事故。 多工地云端位移监测,远程掌控各项目变形状况提升监管效率。工程安全机器视觉位移监测仪渠道价格
地铁车站下穿既有桥梁前进行结构位移基线采集,建立风险对比模型。桥梁机器视觉位移监测仪系统
平台嵌入AI智能分析引擎,提升异常识别与趋势预测能力。传统水利监测主要依赖人工设阈值告警,对突发性或非线性异常难以快速识别。星地遥感在其智慧水利平台中引入AI智能分析引擎,利用机器学习算法对海量历史监测数据进行建模训练,具备趋势识别、突变检测和潜在风险评分等功能。系统可自动识别非线性位移变化、周期性异常震荡、突发滑移等情况,并输出预警等级与解释建议。以边坡监测为例,平台能基于10天前的微小变化趋势,预测未来72小时的滑移风险概率,辅助决策人员提前干预。在深圳某大坝项目中,该AI模型准确识别出一次由地下水位骤升引发的库岸局部沉降趋势,实现了提前72小时的预警通知,为风险控制赢得了充足时间。AI分析的引入,使得水利监测系统从“报警机制”向“预测体系”转型,迈入智能治理新阶段。桥梁机器视觉位移监测仪系统