电渗析(ED)技术是采用基于压滤原理的膜堆来去除水中的氯。膜堆由阳离子和阴离子膜组成,水溶液在通过膜对之间的细胞时,氯离子在电场的作用下会定向移动,从而实现与水的分离。该技术能够大幅降低水中的氯离子含量,产生高纯度的稀释液,氯的去除率可高达 99%。而且,与其他一些处理系统相比,电渗析设备几乎不需要太多的维护。不过,由于水中的钙和二氧化硅等物质会损坏膜堆,所以在使用前同样需要配备预处理系统,并且膜一旦损坏,更换的成本较高。离子交换树脂易受污染,需定期再生。陕西循坏水除氯需求
氯碱电解槽产生的尾气含Cl? 3-8%,传统采用两级碱洗(NaOH 15%):首级吸收率>99%,生成NaClO(pH>12),次级补充Na?SO?还原残余Cl?。某企业改造为"碱洗-催化氧化"工艺,在CuO/γ-Al?O?催化剂(200℃)下将Cl?转化为HCl回收,氯排放从50mg/m3降至1mg/m3以下。关键控制点是避免尾气中H?浓度达易爆极限(4-75%),需安装在线红外分析仪。新型离子液体吸收剂(如[BMIM]PF?)对Cl?的亨利系数低至0.12kPa·m3/mol,吸收容量达传统碱液的3倍。广东源力循坏水除氯除硬氯酸盐副产物有毒,需额外处理。
氯离子是微生物生长的必需元素,其存在会明显加速硫酸盐还原菌(SRB)等腐蚀性菌群的繁殖。某炼油厂循环水系统在Cl?>400mg/L时,生物膜厚度增加3倍,垢下Cl?浓度可达本体水的20倍,造成碳钢设备点蚀速率高达3mm/a。更严重的是,常规杀菌剂对生物膜内菌群效果有限,必须配合物理清洗才能控制。
PVC材质冷却塔填料在Cl?>500mg/L的环境中,分子链中的C-Cl键会逐渐断裂,5年后抗拉强度下降40%。某电厂曾发生填料大面积坍塌事故,直接损失¥300万。虽然玻璃钢填料耐氯性更好,但成本是PVC的3倍,且安装维护要求更高。
提高循环水浓缩倍数是节水关键,但Cl?的积累会制约这一措施。某化工厂原设计浓缩倍数5倍,因Cl?超标(>800mg/L)被迫降至3倍,年补水量增加50万吨(成本¥75万)。必须在节水与防腐之间寻找平衡点。
中水回用、海水淡化等节水措施会引入大量Cl?。某滨海电厂采用海水淡化水作补充水,使循环水Cl?达650mg/L,所有碳钢设备需更换为钛合金,总投资增加¥1.2亿。不解决除氯问题,非常规水源难以大规模应用。
系统停用时,局部Cl?可能浓缩至正常值的10倍。某化工厂检修后发现,碳钢管线低点处Cl?浓度达5000mg/L,造成深度点蚀(>3mm)。必须采用氮气密封+干燥剂保护,单次停机成本增加¥20万。 氯离子使杀菌剂效果降低40%。
微生物腐蚀的协同恶化Cl?是嗜盐菌(如Halomonas)生长的必需元素,其存在导致:生物膜厚度增加3倍,形成缺氧腐蚀微环境垢下Cl?浓度可达本体水的20倍(局部腐蚀速率>3mm/年)常规杀菌剂穿透生物膜效率下降70%某炼油厂循环水系统在Cl?>400mg/L时,碳钢管道微生物腐蚀穿孔事故频发,年检修费用增加¥500万。
氯离子会与水处理化学品发生竞争性反应:缓蚀剂干扰:HEDP在Cl?>500mg/L时缓蚀效率从92%暴跌至58%阻垢剂失效:聚羧酸盐对CaSO?的分散能力下降40%杀菌剂消耗:Cl?与ClO?反应生成无效的ClO??,投加量需提高30%某石化企业因Cl?超标(650mg/L),年度水处理药剂成本从¥350万激增至¥800万,且仍无法控制腐蚀速率。 零排放系统中氯离子易超饱和。贵州数据中心除氯需求
反渗透除氯能耗高,但效率可达95%以上。陕西循坏水除氯需求
反渗透(RO)膜对Cl?的截留率受膜材料、压力和水质影响。聚酰胺复合膜(如BW30-4040)在1.5MPa下对500mg/L NaCl溶液的脱盐率为98.5%,但Cl?实际透过量仍达7.5mg/L。海水淡化中,Cl?浓度超过1000mg/L时膜通量衰减速率增加3倍,需每3个月酸洗(0.1%柠檬酸)。某沿海钢厂采用"超滤-RO"双级系统,投资成本¥5.8万/m3·d,能耗4.2kWh/m3。新兴的带正电纳滤膜(如NF90)通过静电排斥可优先截留Cl?,对Mg2?/Ca2?透过率>90%,特别适用于高硬度废水。陕西循坏水除氯需求