垃圾渗滤液成分复杂(含腐殖酸、氨氮、重金属等),电氧化可同步实现有机物降解和脱氮。以Ti/RuO?-IrO?阳极为例,在Cl?存在下,氨氮通过间接氧化转化为N?(选择性>70%),同时COD去除率达60-80%。关键问题在于渗滤液的高盐分(如Na?、K?)可能导致电极腐蚀,需采用耐盐涂层(如Ti/Pt)或预处理脱盐。此外,耦合生物处理(如前置厌氧消化)可降低电耗,而脉冲电源模式能减少电极钝化。中试研究表明,处理成本约为8-12元/吨,具备规模化应用潜力。电解再生技术使阻垢剂年省500万元。贵州电极
工业废水成分复杂,常含有毒、难降解有机物(如酚类、染料、农药),而电氧化技术对此类污染物表现出独特优势。例如,在焦化废水处理中,采用Ti/SnO?-Sb?O?电极可将苯酚浓度从500 mg/L降至5 mg/L以下,COD去除率达85%。对于印染废水,电氧化能同时实现脱色(降解偶氮键)和COD削减,如使用Ti/Pt阳极时,活性艳红X-3B的脱色率在60分钟内达99%。该技术的工业化应用需解决电极寿命(如涂层剥落问题)和能耗优化(如采用脉冲电流),目前已有模块化电氧化反应器用于电镀、制药等行业的中试案例。黑龙江海水淡化电极设备电化学处理使抗性基因丰度下降2个数量级。
电镀法也是制备钛电极的重要手段。在电镀过程中,将钛基体作为阴极,浸入含有活性金属离子的电镀液中,通过施加合适的电流密度,使活性金属离子在钛基体表面还原沉积,形成活性涂层。例如,在制备钛基贵金属电极时,可以采用电镀法将金、铂等贵金属沉积在钛基体表面。电镀法能够精确控制涂层的厚度和成分,制备出具有均匀涂层的钛电极。同时,通过调整电镀液的配方和电镀工艺参数,还可以制备出具有特殊结构和性能的涂层,满足不同的应用需求 。
随着全球对清洁能源的需求不断增加,电解水制氢作为一种高效、环保的制氢方式,受到关注。钛电极在电解水制氢过程中发挥着关键作用。钛基二氧化铱阳极和钛基铂阴极分别在析氧和析氢反应中表现出优异的电催化性能,能够降低反应的过电位,提高电解效率。通过优化钛电极的结构和涂层性能,可以进一步提高电解水制氢的效率和降低能耗。同时,钛电极的稳定性和长寿命确保了电解水制氢设备能够长期稳定运行,为大规模制氢提供了可靠的技术支持,对推动氢能产业的发展具有重要意义。电化学除重金属同步回收有价值金属。
电极电氧化是一种通过阳极表面直接或间接氧化降解污染物的电化学技术。其机制包括两种路径:一是污染物在阳极表面直接失去电子(直接氧化),二是阳极生成强氧化性活性物种(如羟基自由基·OH、活性氯等)引发间接氧化。以硼掺杂金刚石(BDD)电极为例,其宽电位窗口(>2.5 V vs. SHE)可高效产生·OH,实现有机物的完全矿化。典型反应中,有机物(R)被氧化为CO?和H?O:R + ·OH → CO? + H?O + 其他产物。此外,电解质类型明显影响反应路径:含Cl?介质中会生成HClO/ClO?,而SO?2?介质则依赖·OH主导氧化。该技术的效率由电流密度、电极材料、pH值和传质条件共同决定,需通过优化参数平衡降解速率与能耗。电解海水制氯成本比外购低30%。江苏源力循坏水电极设施
电化学除氧技术将溶解氧降至0.1mg/L以下。贵州电极
含油废水常见于石化、食品加工等行业,其高COD和乳化特性使传统处理方法效率低下。电氧化技术可通过阳极产生的·OH和活性氧物种(如O??)破坏油滴表面的乳化剂,实现破乳和有机物降解。例如,采用Ti/SnO?-Sb电极处理乳化油废水时,COD去除率可达80%以上,且油滴粒径从10 μm降至1 μm以下。关键挑战在于电极污染(油膜覆盖导致活性位点失活),需通过脉冲电流或周期性极性反转(PRS技术)缓解。此外,耦合气浮工艺可提升油污分离效率,而低温等离子体辅助电氧化能进一步降低能耗。未来需开发疏油-亲水双功能电极材料以增强抗污性。贵州电极