单效机组的负荷调节通常通过调节加热热源的流量或改变溶液循环量来实现,其负荷调节范围一般为 30%-100%,在低负荷运行时,由于热源利用效率下降,机组的 COP 值会有较明显的降低,运行稳定性相对较差。双效机组的负荷调节方式更为多样,除了调节热源流量和溶液循环量外,还可通过调节高压发生器和低压发生器的加热量分配来实现更精细的负荷控制,其负荷调节范围可达 20%-100%,且在低负荷运行时,由于双效加热机制的存在,COP 值下降幅度相对较小,运行稳定性更好,能更好地适应负荷波动较大的工况。普星制冷认为满意只有起点,没有终点。聊城溴化锂吸收式冷水机组维保
单效机组由于结构简单,整体体积较小,布局紧凑,通常采用单筒或双筒结构。单筒结构将蒸发器、吸收器、发生器等主要部件集成在一个筒体内,双筒结构则将发生器和冷凝器置于一个筒体内,蒸发器和吸收器置于另一个筒体内。双效溴化锂机组因增加了高压发生器和相关热交换设备,整体结构更为复杂,体积也更大,多采用三筒或四筒结构。三筒结构一般将高压发生器单独置于一个筒体内,低压发生器与冷凝器置于一个筒体内,蒸发器与吸收器置于另一个筒体内;四筒结构则将高压发生器、低压发生器、冷凝器、蒸发器与吸收器分别置于四个筒体内,这种布局虽然增加了机组占地面积,但有利于各部件的维护和热量隔离。聊城溴化锂吸收式冷水机组维修普星制冷竭诚为您服务!
沉浸式蒸发器中,蒸发管簇沉浸在冷媒水中,冷剂水在管簇外蒸发,吸收管簇内冷媒水的热量,使冷媒水温度降低。这种结构简单,传热效果较好,但冷媒水在蒸发器内的流动阻力较大,可能影响制冷效果的均匀性。喷淋式蒸发器则通过喷淋装置将冷剂水均匀地喷淋在蒸发管簇上,冷剂水在管簇表面蒸发,吸收管内冷媒水的热量。这种结构的传热系数较高,冷剂水蒸发效率更好,且冷媒水在管内流动,流动阻力小,便于控制和调节。在双效溴化锂机组中,蒸发器通常与吸收器布置在同一筒体内,通过合理的空间布局和挡板设置,确保冷剂蒸汽能够顺利进入吸收器,同时避免冷剂水的飞溅和损失。
长期停机需将溴化锂溶液全部排入储液罐,储液罐需提前进行干燥处理并充入氮气保护。排液前需对溶液进行过滤,使用精度为5μm的滤芯去除溶液中的杂质与金属离子。在储液罐内安装pH值在线监测装置,当pH值低于时自动添加氢氧化锂溶液。对于停机超过6个月的机组,需对发生器和吸收器内部进行碱洗钝化处理:用2%的氢氧化钠溶液循环清洗2小时,然后用去离子水冲洗至中性,喷涂一层防腐油膜保护金属表面。短期停机时,保持冷却水系统的低流量循环,每天运行冷却水泵1小时,防止冷却水在管道内结垢。在冷却水中添加缓蚀阻垢剂,浓度控制在200-300ppm。停机第5天检查蒸发器和冷凝器的传热管表面,使用软质毛刷管外的浮锈与杂物,避免杂质沉积影响重启后的传热效率。 普星制冷以质量求生存,以信誉促发展。
双效溴化锂机组与单效机组在结构和运行上存在差异,这些差异决定了两者在能效水平、热源适应性、适用场景等方面的不同特点。单效机组以结构简单、低品位热源适应性强为特点,适用于中小冷负荷和低温余热利用场景;双效机组则通过双发生器结构和双效加热循环,实现了高制冷效率和高能源利用率,更适合大冷负荷和高品位热源场合。在实际应用中,应根据具体的热源条件、冷负荷需求、初投资与运行成本等因素综合考虑,选择合适的机组类型。同时,针对两者在维护管理上的差异,制定相应的维护策略,以确保机组安全、高效、稳定运行。随着能源技术的不断发展,溴化锂吸收式制冷技术也在持续进步,未来双效机组有望通过进一步优化结构和提升控制水平,在节能降耗方面发挥更大作用,而单效机组也将在低品位热源利用领域继续拓展应用空间。效率成就品牌,诚信铸就未来,普星制冷。淄博溴化锂制冷机维修
普星制冷艰苦坚实、诚信承诺、实干实效。聊城溴化锂吸收式冷水机组维保
溴化锂机组以水为制冷剂,溴化锂溶液为吸收剂。其基本制冷循环过程如下:在蒸发器中,冷媒水(通常为冷水)在低压环境下蒸发,吸收热量从而实现制冷效果。蒸发产生的冷剂蒸汽进入吸收器,被具有强烈吸水性的溴化锂浓溶液吸收,浓溶液变为稀溶液。吸收过程会释放出吸收热,这部分热量通过冷却水带走。稀溶液由溶液泵输送至发生器,在发生器中,通过外界热源(如蒸汽、热水或燃气燃烧产生的热量)加热,稀溶液中的水分蒸发,再次形成冷剂蒸汽,同时溶液浓缩为浓溶液。冷剂蒸汽进入冷凝器,被冷却水冷却后凝结成冷剂水,冷剂水经节流装置降压后进入蒸发器,再次蒸发制冷,如此循环往复。聊城溴化锂吸收式冷水机组维保